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SUMMARY

This paper is devoted to the numerical approximation of a hyperbolic non-equilibrium multiphase flow
model with different velocities on moving meshes. Such goal poses several difficulties. The presence of
different flow velocities in conjunction with cell velocities poses difficulties for upwinding fluxes. Another
issue is related to the presence of non-conservative terms. To solve these difficulties, the discrete equations
method (J. Comput. Phys. 2003; 186(2):361–396; J. Fluid. Mech. 2003; 495:283–321; J. Comput. Phys.
2004; 196:490–538; J. Comput. Phys. 2005; 205:567–610) is employed and generalized to the context
of moving cells. The complementary conservation laws, available for the mixture, are used to determine
the velocities of the cells boundaries. With these extensions, an accurate and robust multiphase flow
method on moving meshes is obtained and validated over several test problems with exact or experimental
solutions. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Compressible multiphase flow with several velocities has important fundamental and industrial
applications. Some of them deal with high-speed flows, such as shock and detonation waves
through mixtures of materials or the turbulent mixing of compressible fluids, as well as mixtures
of plasmas in astrophysics. In these domains, Lagrangian methods are often preferred to Eulerian
ones because of their lower diffusion properties at material interfaces and their ability to couple
domains of different physics.
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High-pressure conditions involved in these flows require compressible effects consideration for
all phases. Accounting for compressible effects also allows the determination of multiphase flow
models that are unconditionally hyperbolic. Consequently, they are able to propagate correctly the
various waves. Such type of models have been derived by Stewart and Wendroff [1], Baer and
Nunziato [2], Youngs [3, 4], Kapila et al. [5], Saurel and Abgrall [6], Glimm et al. [7], Kapila
et al. [8], Saurel and Metayer [9] and Gavrilyuk and Saurel [10]. The keypoint of these models
relies in the differential expression of the pressure equilibrium condition. It is expressed by an
extra evolution equation for the volume fraction including relaxation terms. These terms control
the rate at which pressure equilibrium is reached after waves propagation.

The numerical approximation of these models is a difficult task. They contain non-conservative
terms and many types of waves. In fact, up to seven waves are present: a set of two acoustic waves
and a contact discontinuity are present for each fluid, supplemented by a volume fraction wave
propagating at the average interface velocity. Such wave pattern complexifies fluxes computation.
Moreover, the presence of non-conservative terms poses difficulties in the presence of shocks. To
solve these difficulties, a new homogenization method has been developed recently and named
‘discrete equations method (DEM)’ [11–14]. This method is not only a homogenization method
but is in fact a numerical method that applies the fundamental ideas of the Godunov method
to a two-phase control volume. It consists in solving for each two-phase control volume, at its
boundaries and at its internal interfaces, an initial value problem between the various fluids and
states. The solution of these interface problems is obtained with the help of Riemann solvers for
the Euler equations. Indeed, each pure fluid is governed by the Euler equations. All Riemann
problem solutions are then averaged over the phases control volumes, in a similar way as done
with the Euler equations and the Godunov scheme. The result is a set of discrete equations that
describes the two-phase mixture involving interaction terms. These discrete equations correspond
to a numerical scheme.

The aim of the present paper is the extension of the DEM method to moving meshes. To this end,
we follow the same methodology and give particular attention to the Lagrangian case. Indeed, a lot
of research and industrial codes related to high-energy flows use Lagrangian methods with reduced
numerical diffusion of convective waves [15–20]. The development of such method in the present
two-phase flows context poses extra difficulties related to the approximation of non-conservative
terms over moving meshes, the upwinding of the various fluxes, as well as the determination of
the cell boundary velocities. Indeed four velocities are present: the two averaged fluid velocities,
the average interface velocity and the cell boundaries velocities.

The paper is organized as follows. We present the theoretical models we are dealing with in
Section 2. In Section 3 we recall the DEM for Eulerian computations. In Section 4 we extend the
DEM for moving meshes. In Section 5 we detail the way the cell boundary velocity is obtained.
In Section 6 the method is validated versus test problems with exact or experimental solutions.

2. TWO-PHASE FLOW MODEL

The mixture contains two phases with indexes 1 and 2. Each phase k is compressible and obeys an
appropriate equation of state Pk = Pk(�k, ek) where P , � and e denote, respectively, the pressure,
density and specific internal energy. Governing equations (1) correspond to a system of seven
partial differential equations. We present the system for the phase 1 only, the equations being
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perfectly symmetric for phase 2
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The first equation expresses the evolution of the phase 1 volume fraction �1. It propagates with the
average interface velocity uI, whose expression has been determined in [12]. During propagation,
the volume fraction varies according to the pressure differential (P1 − P2). The volume variation
rate is controlled by the relaxation parameter �. Its expression has been determined in the same
reference and depends on the specific surface S and the phases acoustic impedances Zk = �kck ,
where ck represents the phase k sound speed.

The second equation represents the phase 1 mass conservation. The third one expresses the
evolution of momentum. A non-conservative term is present on the right-hand side with the average
of the interface pressure PI. The pressure drag force term �(u2 − u1) is responsible for velocities
relaxation, which occurs at a rate controlled by �. Its expression shows a direct connection to the
pressure relaxation parameter �.

The last equation corresponds to the evolution of the specific total energy (defined by E1 = e1+
1/2u21) of phase 1. The interfacial pressure work occurring during the pressure relaxation process
appears in term −�P ′

I (P1 − P2) and involves the volume average interface pressure P ′
I given

above. The pressure drag force work also involves a volume average interface velocity u′
I. The

non-trivial expressions for all these interface variables PI, P ′
I , uI, u

′
I as well as for the relaxation

parameters � and � are demonstrated and explained in Saurel et al. [12] and Chinnayya et al. [13].
In particular, the velocity relaxation parameter is valid for inviscid fluid mixtures. When dealing
with dissipative fluids, the drag coefficient has to be complemented by viscous effects.
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This system forms a non-conservative set of equations, unconditionally hyperbolic. It can be
easily shown that it involves seven characteristic wave speeds: �10 = u1; �11 = u1 − c1; �12 = u1 + c1;
�20 = u2; �21 = u2 − c2; �22 = u2 + c2 and �I = uI.

The derivation of a Lagrangian numerical scheme for the model (1) is the aim of this paper.
Such goal will be reached by extending the DEM. This method being quite unconventional, its
basic ingredients are recalled in the context of motionless Eulerian cells in the next section.

3. RECALLS OF THE DISCRETE EQUATIONS METHOD (DEM)
FOR EULERIAN MESHES

The DEM is a variant of averaging methods described, for example, in Drew and Passman [21].
With conventional averaging method, each pure fluid is governed by a continuum mechanics flow
model that is selected and averaged with the help of a phase function. Such systems are usually
non-conservative and need non-trivial closure relations. With these conventional approaches, the
next step is to integrate numerically over space and time the partial differential equation (PDE)
system. This poses a supplementary problem related to the numerical approximation of the non-
conservative terms. An example of these difficulties is given in Hou and Floch [22] and Dalmaso
et al. [23], and a partial solution is given in Saurel and Abgrall [6].

With the DEM we proceed in the opposite way to what is usually done. The pure fluid equations
solutions are computed at the scale of each inclusion and these solutions are averaged over the
various fluids volumes inside the computational cell. This method is due to Abgrall and Saurel
[11] and has been developed for the numerical approximation of the 7 equation model (1). To be
more precise, with the DEM, the pure phase conservation laws are considered at the microscopic
level. The Riemann problem of the Euler equations is solved for each initial value problem present
at each cell boundary and inside the control volume where inner interfaces are present. These
solutions are then averaged over the control volume and provide the corresponding numerical
scheme for the averaged multiphase flow equations. The method provides the numerical scheme
and contains implicitly the correct averages of interfacial pressure, velocity as well as relaxation
terms.

The first step with the DEM is to give the topology of the two-phase mixture. We have shown in
[12, 13] that the numerical approximations of the fluxes as well as non-conservative terms are not
dependent on this flow topology. Only the relaxation part of the model is strongly dependent of
the flow topology. Thanks to this remark, we consider the representation of a separated multiphase
mixture, namely an annular two-phase flow as represented in Figure 1.

We consider a computational mesh xi (i ∈ Z) and the associated control volumes Ci = ]xi−1/2,

xi+1/2[×]0, H [ where xi+1/2 = (xi + xi+1)/2 and H represents the height of the tube section. The
flow involves two non-miscible phases 1 and 2. The two-phase mixture at the cell scale may be
approximated by three horizontal layers separated by an interface as shown in Figure 1.

Since this geometrical configuration is two dimensional, each pure fluid obeys the two-
dimensional Euler equations:

�U
�t

+ �F
�x

+ �G
�y

= 0 (2)
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Figure 1. Schematic representation of a computational cell consisting of three horizontal fluid layers.

whereU =[1, �, �u, �v, �E]T, F =[0, �u, �u2+P, �uv, (�E+P)u]T and G = [0, �v, �uv, �v2+
P, (�E + P)v]T.
The first trivial equation �1/�t+�0/�x+�0/�y = 0 comes from an evolution equation expressing

the link between the Lagrangian and Eulerian coordinates. This trivial identity will be necessary
to obtain the volume fraction numerical scheme.

To obtain the local equations of each pure fluid k, we multiply the Euler equations (2) by the
phase function Xk of each fluid. This one only admits two values: Xk(M, t) = 1 if the point M
is located in the phase k at time t and Xk(M, t) = 0 otherwise. This function obeys the local
evolution equation:

�Xk

�t
+ �x

�Xk

�x
+ �y

�Xk

�y
= 0 (3)

where �x and �y are the components of the local interface velocity.
After some algebraic manipulations, the local pure fluids equations are given by

�XkU

�t
+ �Xk F

�x
+ �XkG

�y
= F lag �Xk

�x
+ G lag �Xk

�y
(4)

where the Lagrangian fluxes are defined as F lag = F − �xU and G lag =G − �yU .
These Lagrangian fluxes are used only at the interfaces separating the various phases. At these

interfaces, in absence of mass transfer we have �x = u and �y = v. In this case, the Lagrangian
fluxes read F lag =[−u, 0, P, 0, Pu]T and G lag = [−v, 0, 0, P, Pv]T.

The next step consists in the integration over time and space of Equation (4):∫ �t

0

∫
Ci

(
�XkU

�t
+ �Xk F

�x
+ �XkG

�y

)
dV dt =

∫ �t

0

∫
Ci

(
F lag �Xk

�x
+ G lag �Xk

�y

)
dV dt (5)

Relation (5) can be written as

I1 + I2 + I3 = I4 + I5 (6)
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with
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∫ �t
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�t
dV dt
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0

∫
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�x
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∫
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0

∫
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G lag �Xk
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Now, these five integrals have to be computed in order to obtain the discrete macroscopic equations
of each fluid.

To this end, we define the following averaging operators:

Volume average: 〈 f 〉 = 1

V

∫
V

f dV

Surface averages: f̂ = 1

�x

∫ xi+1/2

xi−1/2

f dx, f̄ = 1

H

∫ H

0
f dy

Time average: f̃ = 1

�t

∫ �t

0
f dt

Phase average: { fk} = 1

Vk

∫
V
XkU dV = 1

Vk

∫
Vk
Uk dV

(7)

3.1. Integration of the temporal term I1

The first integral I1 reads

I1 =
∫ �t

0

∫
Ci

�XkU

�t
dV dt =

∫
Ci

(XkU )n+1 dV −
∫
Ci

(XkU )n dV =
(
〈XkU 〉n+1

i − 〈XkU 〉ni
)
Vi

Using the volume average of the phase function Xk in the cell Ci , we have

〈Xk〉i = 1

Vi

∫
Ci

Xk dV = Vk,i
Vi

def= �k,i

where Vk,i represents the volume occupied by the phase k in the cell Ci .
Then, the term I1 reads

I1 = ((�k{Uk})n+1
i − (�k{Uk})ni )Vi

where {Uk}i def= (1/Vk,i )
∫
Ck,i

Uk dV is the phase average of Uk in Vk,i .
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3.2. Integration of the convective fluxes I2 and I3

The second integral I2 reads

I2 =
∫ �t

0

∫
Ci

�Xk F

�x
dV dt =

∫ �t

0

∫ H

0
(Xk F)i+1/2 dy dt −

∫ �t

0

∫ H

0
(Xk F)i−1/2 dy dt

Using the previous averages, we obtain

I2 = H
∫ �t

0
(Xk F)i+1/2 dt − H

∫ �t

0
(Xk F)i−1/2 dt = �t H((X̃k F)i+1/2 − (X̃k F)i−1/2)

In order to determine the average Eulerian flux X̃k F at each cell boundary, we first compute the
following surface averages: ∫ H

0
(Xk F)i±1/2 dy =∑

l,m
(SX∗

k F
∗)lm,i±1/2

where Slm represents the contact surface for each pair of fluids in contact.
Consider the cell boundary (i−1/2) shown in Figure 1. The various types of contacts at this cell

boundary and for this specific flow configuration are schematized in the Figure 2. Let us denote
by (l,m) the configuration where the fluid l is present on the left and the fluid m is present on
the right at a given cell boundary. In the context of two fluids, four types of contact between pure
fluids are possible at each cell boundary. For example, S12,i−1/2 represents the contact surface at
cell boundary (i − 1/2) between fluid 1 on the left (present in the cell Ci−1) and fluid 2 on the right
(present in the cell Ci ) (Figure 2). Each type of contact is associated with the corresponding surface
Slm,i−1/2. At each contact (l,m), the corresponding Riemann problem is solved. Its solution is
denoted by the superscript ‘∗’ and is used for the computation of the various fluxes (Eulerian and
Lagrangian). X∗

k,lm represents the phase function of fluid k for the same pair. Its value is reported
in Table I and is obtained from the Riemann problem solution, according to the location of fluid k.

i-1 /2 

1 1

1
1

2
2

S11

S12

S12

S11

S22

Figure 2. Schematic representation of the different types of contact at a cell boundary.
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Table I. The different configurations for Eulerian fluxes at cell boundary
(i − 1/2) for fluid k = 1.

Contact Surface Eulerian flux Phase function X∗
1

1–1 S11 = H Min(�1,i−1, �1,i ) F∗
11 X∗

1,11 = 1

1–2 S12 = H Max(0, �1,i−1 − �1,i ) F∗
12 X∗

1,12 =
{
1 if u∗

12>0

0 otherwise

2–1 S21 = H Max(0, �1,i − �1,i−1) F∗
21 X∗

1,21 =
{
1 if u∗

21 < 0

0 otherwise

2–2 S22 = H Min(�2,i−1, �2,i ) F∗
22 X∗

1,22 = 0

The contact surfaces, reported also in Table I for cell boundary (i − 1/2), are obtained follow-
ing simple geometrical arguments. Consider, for example, contact (1, 1). The height of contact
corresponds to the minimum of the two levels/heights of fluid 1 on both sides. Thus, the length
of contact is H Min(�1,i−1; �1,i ). The indicator function X1 is always equal to 1 for this type
of contact. The flux that crosses the cell boundary along this height is solution of the Riemann
problem of the Euler equations with fluid 1 of cell (i − 1) on the left and fluid 1 of cell (i) on the
right.

On another part of cell boundary (i − 1/2), fluid 1 on the left is in contact with fluid 2 on the
right. In such instance, the length of contact is H(�1,i−1 −�1,i ). Such type of contact appears only
when the level of fluid 1 in cell (i − 1) is higher than the one of cell (i). In order to consider in a
single formulae the situation when the level of fluid 1 in cell (i − 1) is lower than the one in cell
(i), the height of contact is given by the general formulae H Max(0; �1,i−1−�1,i ). We also have to
determine the indicator function for this contact at the cell boundary. The interface between 1 and
2 may enter cell (i) or leave it. When it enters the cell (u∗(1, 2)>0), the convective fluxes must
be accounted for in the evolution of fluid 1. The corresponding flux is solution of the Riemann
problem of the Euler equations with fluid 1 on the left and fluid 2 on the right.

The remaining contacts (2, 1) and (2, 2) are treated identically as summarized in Table I.
When fluid k is present on both sides of the interface, X∗

k = 1. When the other fluid is present on
both sides, X∗

k = 0. These situations correspond to the first and last lines of the Table I, respectively.
As the Riemann problem is solved to determine the contact discontinuity velocity u∗

lm , the whole
solution is sampled along the axis x/t = 0 and allows the various fluxes computation F∗

lm .
The Eulerian fluxes are supposed to be constant during a time step (CFL condition), thus we

have

I2 =�t

(∑
l,m

(
SX∗

k F
∗)

lm,i+1/2 −∑
l,m

(
SX∗

k F
∗)

lm,i−1/2

)

The third integral I3 is obtained as previously:

I3 =
∫ �t

0

∫
Ci

�XkG

�y
dV dt = �t�x(( ˜̂XkG) j+1/2 − ( ˜̂XkG) j−1/2)
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Due to the wall boundary conditions and symmetry of the annular flow topology, this integral
vanishes:

I3 = 0

3.3. Integration of the non-conservative terms I4 and I5

The fourth integral I4 involves the Lagrangian fluxes. It reads

I4 =
∫ �t

0

∫
Ci

F lag �Xk

�x
dV dt =

∫ �t

0

∫ H

0

∫ xi+1/2

xi−1/2

F lag �Xk

�x
dx dy dt

The only interfaces present in the flow topology considered in Figure 1 where �Xk/�x in non-zero
are located at the cell boundaries. Then, I4 reads

I4 =
∫ �t

0

∫ H

0

(
F lag[Xx

k ]
)
i−1/2

dy dt +
∫ �t

0

∫ H

0
(F lag[Xx

k ])i+1/2 dy dt

where [Xx
k ] represents the jump of Xk in the x-direction through an interface. As detailed in

Abgrall and Saurel [11], the preceding integration is allowed because the Lagrangian flux F lag is
uniform at every location where �Xk/�x is non-zero.

By using the definitions of averages, we obtain

I4 =�t H((
˜

F lag[Xx
k ])i−1/2 + (

˜

F lag[Xx
k ])i+1/2)

As for the calculations of the Eulerian fluxes, we use the considerations described in Table II (for
cell boundary (i − 1

2 )).
By summing the different terms, we obtain∫ H

0
(F lag[Xx

k ])i−1/2 dy =∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i−1/2

The jump of the phase function is zero when the same fluid is present on both sides of the inter-
face (lines 1 and 4 of Table II). When the fluid under interest lies initially on the left and is entering

Table II. The different configurations for Lagrangian fluxes at cell boundary
(i − 1/2) for fluid k = 1.

Contact Surface Lagrangian flux Jump [Xx
1 ]∗

1–1 S11 F
lag,∗
11 [Xx

1 ]∗11 = 0

1–2 S12 F
lag,∗
12 [Xx

1 ]∗12 =
{−1 if u∗

12 > 0

0 otherwise

2–1 S21 F
lag,∗
21 [Xx

1 ]∗21 =
{
1 if u∗

21 > 0

0 otherwise

2–2 S22 F
lag,∗
22 [Xx

1 ]∗22 = 0
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the cell (line 2 of Table II), the jump of its associated phase function is −1. When the considered
fluid lies on the right and the other fluid is entering the cell (line 3 of Table II), the jump of its
phase function is 1. The Lagrangian fluxes, in each type of contact, involve only the corresponding
interface velocity and pressure that are provided by the Riemann solver.

For cell boundary (i + 1/2), we also have∫ H

0
(F lag[Xx

k ])i+1/2 dy =∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i+1/2

Assuming that the Lagrangian fluxes are constant during the time step, we have

I4 =�t

(∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i−1/2 +∑

l,m
(SF lag,∗[Xx,∗

k ])lm,i+1/2

)
The last integral I5 is obtained similarly:

I5 =
∫ �t

0

∫
Ci

G lag �Xk

�y
dV dt

The jump [Xk] is non-zero only for the horizontal interfaces (see Figure 1) and the contact surface
between phases reduces to the cell size. Consequently,

I (1)
5 =�t�x(G lag,∗

i (2, 1) − G lag,∗
i (1, 2))

I (2)
5 =−�t�x(G lag,∗

i (2, 1) − G lag,∗
i (1, 2))

where the superscripts denote the phase index.
The Lagrangian flux along the y-direction reads: G lag = (−v, 0, 0, P, Pv)T. In the present one-

dimensional context v = 0m/s, but the pressures Pk are different in each fluid. It implies that the
interface pressures are equal P∗

i (1, 2) = P∗
i (2, 1) while the interface velocities are opposite. Thus,

only the first and last components of I5 are non-zero. We will show hereafter that this term does
not involve any derivative. It represents a relaxation term.

Finally, numerical scheme (6) reads, for each fluid k:

(�k{Uk})n+1
i − (�k{Uk})ni

�t
+ (X̃k F)i+1/2 − (X̃k F)i−1/2

�x

= (
˜

F lag[Xx
k ])i−1/2 + (

˜

F lag[Xx
k ])i+1/2

�x
+ (G lag,∗

i (k′, k) − G lag,∗
i (k, k′))

H
(8)

where all terms have been divided by �xH�t and with

(X̃k F)i±1/2 = 1

H

∑
l,m

(SX∗
k F

∗)lm,i±1/2

(
˜

F lag[Xx
k ])i±1/2 = 1

H

∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i±1/2

The ingredients involved in the computation of these two sums are given in Tables I and II.
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4. THE DISCRETE EQUATION METHOD FOR MOVING MESHES

The time-dependent two-phase control volume Ci corresponds to the computational cell: Ci =
]xi−1/2, xi+1/2[ × ]0, H [. Top and bottom boundaries, located at y = 0 and y = H , respectively,
are motionless. The right and left cell boundaries located at xi+1/2 and xi−1/2 are considered mobile
since we are looking for an arbitrary Lagrangian Eulerian (ALE) or Lagrangian scheme. These
boundaries are moving with the velocities ẋi+1/2 and ẋi−1/2, respectively. We will address the
question of the determination of these velocities in a later section. With these definitions Equation
(5) becomes

∫ �t

0

d

dt

∫
Ci (t)

(XkU ) dx dy dt −
∫ �t

0

∫ H

0
((ẋ XkU )i+1/2 − (ẋ XkU )i−1/2) dy dt

+
∫ �t

0

∫ H

0
((Xk F)i+1/2 − (Xk F)i−1/2) dy dt +

∫ �t

0

∫ xi+1/2

xi−1/2

((XkG)y=H − (XkG)y=0) dx dt

=
∫ �t

0

∫
Ci (t)

(F − �xU )
�Xk

�x
dx dy dt +

∫ �t

0

∫
Ci (t)

(G − �yU )
�Xk

�y
dx dy dt (9)

The numerical scheme building consists in the approximation of the five integrals:

I1 =
∫ �t

0

d

dt

∫
Ci (t)

(XkU ) dx dy dt

I2 =
∫ �t

0

∫ H

0
((Xk(F − ẋU ))i+1/2 − (Xk(F − ẋU ))i−1/2) dy dt

I3 =
∫ �t

0

∫ xi+1/2

xi−1/2

((XkG)y=H − (XkG)y=0) dx dt

I4 =
∫ �t

0

∫
Ci (t)

(F − �xU )
�Xk

�x
dx dy dt

I5 =
∫ �t

0

∫
Ci (t)

(G − �yU )
�Xk

�y
dx dy dt

4.1. Approximation of the temporal term

The time integral reads

I1=
∫ �t

0

d

dt

∫
Ci (t)

(XkU ) dx dy dt=
∫ �t

0

d

dt
(�xH(�{Uk})i dt=H((��x{Uk})n+1

i −(��x{Uk})ni )
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4.2. Numerical approximation of the convective fluxes on moving meshes

We now consider the second integral

I2 =
∫ �t

0

∫ H

0
((Xk(F − ẋU ))i+1/2 − (Xk(F − ẋU ))i−1/2) dy dt

= �t H(((
˜Xk(F − ẋU ))i+1/2 − (

˜Xk(F − ẋU ))i−1/2))

Let us focus on the flux
∫ H
0 (Xk(F− ẋU ))i−1/2 dy. In order to compute this integral, four instances

have to be considered, according to the locations of the fluids in contact at the cell boundary (see
Figure 2). Consider, for example, the computation of this integral for phase 1. The contact surfaces
for each pair of fluids at the cell boundary are unchanged compared to the previous situation with
fixed meshes. Differences appear in the fluxes and phase function sampling. Indeed, since the cell
is moving, the fluxes and phase function have to be sampled along the trajectory x/t = ẋi−1/2.

Consider, for example, the instance where fluid 1 of cell (i − 1) is on the left and fluid 1 of cell
(i) is on the right. The indicator function X1 is always equal to 1 for this type of contact. The flux
(F − ẋi−1/2U )∗11 is solution of the Riemann problem with fluid 1 on both sides. The flux F and
vector of conservative variables U are sampled along the cell boundary trajectory x/t = ẋi−1/2.

On another part on the cell boundary (i − 1/2), fluid 1 on the left is in contact with fluid 2
on the right. The corresponding flux (F − ẋi−1/2U )∗12 is solution of the Riemann problem of the
Euler equations with fluid 1 on the left and fluid 2 on the right and is sampled along the same
trajectory. We also have to determine the indicator function for this contact at the cell boundary.
The interface between 1 and 2 may enter into cell (i) or leave it. When it enters into the cell,
the convective fluxes must be accounted for in the evolution of fluid 1. This appears only when
u∗(1, 2)>ẋi−1/2.

The four cases of contact at the cell boundary (i − 1/2) are summarized in Table III.
As given previously, the function X∗

1,lm represents the fluid indicator function at the cell bound-
ary, where fluid l is initially on the left of the cell boundary and fluid m on the right. When fluid
‘l’ is in contact with fluid ‘m’, the indicator function at the cell boundary depends on the sign of
the interface velocity. The interface velocity u∗

lm is determined by solving the Riemann problem

Table III. The various flow patterns at the left cell boundary and the different ingredients for
the flux computation of fluid ‘1’.

Intercell flux sampled
Contact Surface along x/t = ẋi−1/2 Phase function X∗

1

1–1 S11 (F − ẋi−1/2U )∗11 X∗
1,11 = 1

1–2 S12 (F − ẋi−1/2U )∗12 X∗
1,12 =

{
1 if u∗(1, 2)>ẋi−1/2

0 otherwise

2–1 S21 (F − ẋi−1/2U )∗21 X∗
1,21 =

{
1 if u∗(2, 1)<ẋi−1/2

0 otherwise

2–2 S22 (F − ẋi−1/2U )∗22 X∗
1,22 = 0

Note: The asterisk represents the Riemann problem solution.
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between the two fluids in contact. We define the flux F∗
lm and the vector of conservative variables

U∗
lm solution of the Riemann problem with states l on the left and m on the right of the initial

discontinuity. The flux and conservative variables vector are also determined with the help of a
Riemann solver. The solution is sampled along the cell boundary trajectory. The length of contact
corresponds to the height of contact between fluids at the cell boundary for the flow pattern (l,m).
It can be easily checked that the sum of these four lengths corresponds to the total height H .

By summing the four fluxes weighted by the corresponding length and phase function, we get
the total flux for fluid ‘1’ at the cell boundary (i − 1/2):∫ H

0
(X (F − ẋU ))k,i−1/2 dy =∑

l,m
(SX∗

k (F − ẋU )∗)lm,i−1/2

Consequently, integral I2 reads

I2 =�t

(∑
l,m

(SX∗
k (F − ẋU )∗)lm,i+1/2 −∑

l,m
(SX∗

k (F − ẋU )∗)lm,i−1/2

)
It remains to determine the numerical approximation of integral I3:

I3 =
∫ �t

0

∫ xi+1/2

xi−1/2

((XkGk)y=H − (XkGk)y=0) dx dt = 0

This integral vanishes again because of wall boundary conditions and the symmetry of the two-
phase flow topology.

4.3. Numerical approximation of the non-conservative terms

Following the same guide as previously, we first consider the integral I4:

I4 =
∫ �t

0

∫
Ci (t)

(F − �xU )
�Xk

�x
dx dy dt

Let us first note that �Xk/�x is zero everywhere except at the interfaces where it is the Dirac
function. The product (F − �xU )�Xk/�x is consequently non-zero only at the interfaces. In these
locations, since mass transfer is not considered, the interface and fluid velocities are equals �x = u
and the difference (F − �xU ) represents the Lagrangian flux (F lag = F − �xU ). The key remark
for the numerical approximation of the non-conservative terms for two-phase flows is that the
Lagrangian flux is always constant across the interface, that is at each location where �Xk/�x is
non-zero. Indeed, the Lagrangian flux is only composed of the normal interface velocity (here the
velocity along the x-axis) and the pressure. These two variables are precisely constant across the
interface. This remark renders possible the integration of (F − �xU )�Xk/�x .

Second, as shown in Figure 1 there are at most six internal interfaces inside the two-phase
control volume Ci . The first four interfaces come from the right and left cell boundaries, while the
last two interfaces correspond to the horizontal fluid layer inside the cell. When considering the
integral I4 the term associated with the horizontal interfaces cancels because �Xk/�x = 0. Only
the four vertical interfaces must be considered. Thus, we have to determine

I4 =
∫ �t

0

(∫ H

0
F lag
i−1/2[Xx

k ]i−1/2 dy +
∫ H

0
F lag
i+1/2[Xx

k ]i+1/2 dy

)
dt
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Table IV. The various configurations for Lagrangian fluxes at the left cell boundary.

Contact Surface Lagrangian flux Jump [Xx
1 ]∗

1–1 S11 F
lag,∗
11 0

1–2 S12 F
lag,∗
12 [X1]∗12 =

{−1 if u∗
12>ẋi−1/2

0 otherwise

2–1 S21 F
lag,∗
21 [X1]∗21 =

{
1 if u∗

21>ẋi−1/2

0 otherwise

2–2 S22 F
lag,∗
22 0

where [Xx
k ] = Xk,R − Xk,L represents the jump of the characteristic function between a right (R)

and a left (L) state along the x-direction. By using the definition of the averages (7), this last
relation can be rewritten as

I4 =�t H((
˜

F lag[Xx
k ])i−1/2 + (

˜

F lag[Xx
k ])i+1/2)

We detail the integral calculation for the interfaces coming from the left cell boundary. The same
four possible cases that have been considered for the flux computation are summarized in Table IV.

By summing the various terms of Table IV for both cell boundaries and assuming that Lagrangian
fluxes are constant during a time step, we have

I4 =�t

(∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i−1/2 +∑

l,m
(SF lag,∗[Xx,∗

k ])lm,i+1/2

)

It remains to determine the numerical approximation of the last integral I5

I5 =
∫ �t

0

∫
Ci

G lag �Xk

�y
dx dy dt =

∫ �t

0

∫ xi+1/2(t)

xi−1/2(t)

∑
G lag[X y

k ] dx dt

The jump [X y
k ] is non-zero only for the horizontal interfaces (see Figure 1). The symbol

∑
represents the summation over the two horizontal interfaces. The bounds of the space integral are
function of time. During the time step the right cell boundary trajectory reads xi+1/2(t) = ˙xi+1/2t+
xni+1/2. The term G lag[Xk] being constant during the time step, the approximation of I5 reads

I (1)
5 = �t

2
(�xn+1 + �xn)i (G

lag,∗
i (2, 1) − G lag,∗

i (1, 2))

I (2)
5 =−�t

2
(�xn+1 + �xn)i (G

lag,∗
i (2, 1) − G lag,∗

i (1, 2))

where the superscripts denotes the phase index.
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4.4. Summary of the numerical scheme for moving meshes

Each integral I1, . . . , I5 is now divided by �t · H . The discretization of (9) for the geometrical
description of the two-phase mixture in accordance with Figure 1 is

(�k�x{Uk})n+1
i − (�k�x{Uk})ni

�t
+ (

˜Xk(F − ẋU ))i+1/2 − (
˜Xk(F − ẋU ))i−1/2

= (
˜

F lag[Xx
k ])i−1/2 + (

˜

F lag[Xx
k ])i+1/2 + 1

2

(�xn+1 + �xn)i (G lag,∗
i (k′, k) − G lag,∗

i (k, k′))
H

(10)

The two-phase fluxes read

(
˜Xk(F − ẋU ))i±1/2 = 1

H

∑
l,m

(SX∗
k (F − ẋU )∗)lm,i±1/2

And the non-conservative terms read

(
˜

F lag[Xx
k ])i±1/2 = 1

H

∑
l,m

(SF lag,∗[Xx,∗
k ])lm,i±1/2

In these formulae, the notation (l,m) denotes the flow pattern when the fluid l is on the left and
m on the right. The superscript ‘*’ denotes the Riemann problem solution. The definitions of the
contact surfaces, fluxes and phase functions are given in Tables III and IV. System (10) is the
discrete analogue of System (1). The continuous limit of (10) has been determined when both �t
and �x tend to zero, in the case of non-moving meshes. The details are given in [12] and provide
precisely the system presented initially (1). For another flow topology, a similar limit is obtained
in Chinnayya et al. [13].

To use numerical scheme (10) the cell boundary velocities have to be determined. This issue is
addressed in the next section.

5. LAGRANGIAN CELL BOUNDARIES VELOCITIES

Numerical scheme (10) is an ALE scheme for two-phase flows. In this context, the choice of
cells boundaries velocities is arbitrary. However, most applications mentioned in the Introduction
involve Lagrangian resolution of the flow field. Since the present model contains three averaged
velocities u1, u2 and uI the choice of the Lagrangian velocity ẋi±1/2 is not obvious.

Most Lagrangian codes use a continuum fluid model with a single velocity. The continuum
model is a system of conservation laws from which the cell boundaries velocities are obtained
as solution of the Riemann problem. In the context of multiphase mixtures, the cell boundary
velocity can be determined by following a similar approach because additional conservation laws
are available for the mixture. These conservation laws are simply obtained by summing the mass,
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momentum and energy equations of both phases. The system obtained from (1) reads

�(�1�1 + �2�2)

�t
+ �(�1�1u1 + �2�2u2)

�x
= 0

�(�1�1u1 + �2�2u2)

�t
+ �(�1�1u

2
1 + �2�2u

2
2 + �1P1 + �2P2)

�x
= 0

�(�1�1E1 + �2�2E2)

�t
+ �(�1�1E1u1 + �2�2E2u2 + �1P1u1 + �2P2u2)

�x
= 0

(11)

The Riemann problem solution (or part of it) for this system will provide the mixture velocity at
the cell boundaries. This mixture velocity corresponds to the velocity of the centre of mass and
is the analogue of the one used with homogeneous fluid models. Thus, the Lagrangian motion of
the cell boundaries will be done with this mixture velocity. Its practical determination is detailed
hereafter.

Let us recall that the original System (1) involves seven characteristic wave speeds: �10 = u1,
�11 = u1 − c1, �12 = u1 + c1, �20 = u2, �21 = u2 − c2, �22 = u2 + c2 and �I = uI. System (11) involves
the same wave speeds. To determine the mixture velocity at the cell boundary (i − 1/2) separating
cell (i −1) on the left and cell (i) on the right, we adopt an approximate resolution of the Riemann
problem for System (11). The HLL strategy [24] is adopted and is accurate enough since only the
mixture velocity is required. Within the HLL solver, only the fastest right- and left-facing wave
speeds are necessary. We denote by SR the right-facing wave speed and by SL the left-facing one.
Following Davis [25] these wave speeds may be estimated as

SR =Max(0; �12,i−1; �12,i ; �22,i−1; �22,i ), SL =Min(0; �11,i−1; �11,i ; �21,i−1; �21,i )

Let us now write System (11) under reduced form

�Umix

�t
+ �Fmix

�x
= 0

with the conservative vector of variables

Umix = ((�1�1 + �2�2), (�1�1u1 + �2�2u2), (�1�1E1 + �2�2E2))
T

and the associated conservative flux vector.
With these notations, the vector of conservative variables at the cell boundary (i − 1/2), under

HLL approximation, reads

UHLL
mix,i−1/2 = SRUmix,i − SLUmix,i−1 + Fmix,i−1 − Fmix,i

SR − SL

Thus, the boundary cell velocity is easily determined as the ratio of the second and first components
of this vector:

ẋi−1/2 = SRU
(2)
mix,i − SLU

(2)
mix,i−1 + F (2)

mix,i−1 − F (2)
mix,i

SRU
(1)
mix,i − SLU

(1)
mix,i−1 + F (1)

mix,i−1 − F (1)
mix,i

(12)

where the superscripts (1) and (2) denote the components of vectors Umix and Fmix.
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With the help of Formula (12), the Riemann problem solution sampling is possible. The cells
size evolution is also obtained with the cells boundary velocities as

�xn+1
i =�xni + �t (ẋi+1/2 − ẋi−1/2)

All formulae are now available and numerical tests can be done. Let us just mention that this
scheme is stable under conventional CFL restriction based on the fastest wave speed.

6. NUMERICAL TESTS

The Lagrangian numerical method is validated over different tests involving interfaces, shocks and
relaxation effects.

6.1. Uniform velocity and pressure flow with a volume fraction discontinuity

We consider a tube filled with a two-phase mixture. Both phases are in velocity and pressure
equilibrium. Moreover, the flow velocity, as well as the pressure is uniform in the entire tube.
At the centre a volume fraction discontinuity separates a mixture on the left that contains mainly
a heavy fluid with a polytropic exponent of 3 from another mixture on the right that contains
mainly a light gas with a polytropic exponent of 1.4. This test has a trivial solution corresponding
to the pure advection of the volume fraction discontinuity. However, it presents two interesting
features:

• The two-phase algorithm being quite complex, it is important to check that it fulfils this
basic test. Note that in the context of a pure Eulerian scheme, this test presents an important
difficulty related to the smearing of the volume fraction wave, responsible for the apparition of
an artificial mixture zone, for which the computation of the pressure, sound speed, temperature
and in fact all thermodynamic variables pose difficulties. This issue has been addressed by
many authors [6, 11, 26–31] with various types of modelling approaches and numerical
schemes. We will check that the present algorithm does not create any spurious pressure or
velocity oscillation with both Eulerian and Lagrangian formulations.

• The Eulerian and Lagrangian solutions will be compared in order to illustrate their differences
for the capturing of volume fraction waves.

Each fluid is governed by the ideal gas equation of state: Pk = (�k − 1)�kek with �1 = 3 and
�2 = 1.4. The heavy fluid (phase 1) is present initially everywhere with the density �1 = 100 kg/m3

but with different volume fractions. The light gas (phase 2) is also present everywhere with the
density �2 = 1 kg/m3. Both phases velocities are uniform (u = 100m/s) as well as initial pressures
(P = 105 Pa). On the left of the tube (x<0.5m), the heavy fluid volume fraction is �1 = 1−� while
on the right part of the tube it is �1 = � with � = 10−6. Since the two chambers contain nearly pure
fluids, a heavy one on the left and a light one on the right, the numerical solution can be compared
to the one obtained with the Euler equations with a contact discontinuity separating the two gases.
The solutions are shown at time 1703 �s in Figure 3. The exact solution is shown with lines while
the numerical ones are shown with symbols.

On the left part of Figure 3 the numerical solution obtained with the Lagrangian scheme is
compared with the exact solution. On the right part, the same comparison is done with the Eulerian
version. Both numerical computations are done with a mesh involving 100 cells. It appears clearly
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Figure 3. Propagation of an interface/volume fraction discontinuity in a uniform velocity and pressure
flow. The exact solution is shown with lines and the numerical one is shown with symbols. The left graphs

correspond to the Lagrangian method and those on the right correspond to the Eulerian version.

that both methods preserve perfectly the uniform velocity and pressure flow conditions. Positivity
of the volume fraction is also obtained. The Lagrangian method shows a better representation of
the volume fraction discontinuity, as was expected.

6.2. Shock tube test problems

We consider a shock tube filled on the left side with a high-pressure heavy fluid and on the right
side with a light gas at lower pressure. This test problem consists of a conventional shock tube
with two fluids and has an exact solution. Since the two fluids are pure, only separated by an
interface, the Riemann problem of the Euler equations provides the exact solution. However, it is
well known [27] that the numerical solution of the Euler equations produces spurious pressure and
velocity oscillations when the polytropic coefficients are discontinuous. The multiphase model is
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Figure 4. Shock tube with an interface separating nearly pure fluids. The Lagrangian scheme is used. The
exact solution is shown with lines and the numerical one with symbols.

able to cure this problem, as shown in this example. We retain the same equation of state and
polytropic exponents as in the previous test (�1 = 3 for the heavy fluid and �2 = 1.4 for the light
fluid). The heavy fluid is initially present everywhere with the density �1 = 10 kg/m3 but with
different volume fractions. The light gas (phase 2) is also present everywhere with the density
�2 = 1 kg/m3. Both phases are initially at rest u = 0m/s. On the left of the tube (x<0.5m), the
heavy fluid volume fraction is �1 = 1 − � with the initial pressure of P = 106 Pa and on the right
part of the tube its volume fraction is �1 = � with �= 10−6 and initial pressure P = 105 Pa. The
solutions are shown at time 755�s in Figure 4. The exact solution is shown with lines while the
numerical one is shown with symbols. To show mesh convergence of the results, a mesh involving
1000 cells is used. The fluids densities and internal energies are not compared with the exact
solution because no exact solution exists for these variables (no exact Riemann solver is available
for this model). Only the mixture density (�mix = �1�1 + �2�2), pressure (Pmix = �1P1 + �2P2)
and velocity (umix = (�1�1u1 + �2�2u2)/(�1�1 + �2�2)) can be compared with the exact solution.
Excellent agreement is obtained. The test problems of Figures 3 and 4 clearly show that the method
is able to deal with interface problems. We now consider flows of two-phase mixtures with several
velocities.

We reuse the same initial conditions as previously, except that the initial volume fraction is 0.5
everywhere. It means that the diaphragm separates the high-pressure chamber and the low-pressure
one, and that both chambers contain a mixture of two fluids, a heavy one and a light one, with
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Figure 5. Shock tube with a mixture of heavy and light fluids. Pressure and velocity relaxation effects
are removed. The numerical solution obtained with the Lagrangian scheme is shown with symbols. The

exact solution is shown with lines. The single-phase behaviour of the Euler equations is recovered.

different equations of state. Since the two fluids behave with their own equation of state and have
different densities, they will behave with different velocities. In this test problem, the relaxation
parameters � and � are set to zero in System (1). In the discrete approximation, corresponding
relaxation terms (

∑
G lag[X y]) are set to zero. It means that no interaction exists between the

fluids. As the volume fraction is initially uniform and that no pressure relaxation effects are
accounted for, the volume fraction will remain uniform. Thus, each pure fluid behaves as if it
was alone and the multiphase flow solution can be compared to the one of the Euler equations,
solved two times. The solutions are shown at time 405�s in Figure 5. The fluid having the fastest
flow velocity as well as the fastest shock wave corresponds to the light one. These results show
clearly that the Lagrangian scheme behaves correctly for fluid mixtures where each component
has its own velocity. To investigate a little more the effects related to pressure relaxation, let
us consider the same test problem where now the term

∑
G lag[X y] is activated. In this term,

the parameter related to the tube height has been taken equal to 3mm: H = 0.003m. It results
in stiff pressure and velocity relaxation effects. The results are displayed in Figure 6 at time
473 �s. Again, the results are obtained with a mesh involving 1000 cells, but no comparison
with an exact solution is available. The variables of fluid 1 are shown with lines while those of
fluid 2 are shown with symbols. The results clearly show that at relaxed state both pressures and
velocities are equal. These relaxation processes involve volume fraction variations across the various
waves.

6.3. Shock bubble interaction test problem

We now consider a more difficult test problem given in full detail in Saurel et al. [12]. It consists
in the study of the two-dimensional interaction of a shock wave propagating in a heavy gas, with
the same characteristics as the one used before, with a light gas bubble having also the same
characteristics as in the previous tests. The initial situation is depicted in Figure 7.

When the shock interacts with the light gas bubble, the interface undergoes a complex motion
resulting in the bubble contraction and fluid rotation. In order to account for turbulent motion with
a one-dimensional model, extra terms have to be added to System (1). Turbulent pressure, energy
effects can be added to the equations without changing the general structure. An extra equation
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Figure 6. Shock tube with two mixtures of heavy and light fluids. The pressure and velocity relaxation
terms are used. The numerical solution obtained with the Lagrangian scheme is shown with symbols for
the light fluid and with lines for the heavy one. The relaxed pressure and velocity states are obtained

through the shock and rarefaction waves.
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Figure 7. Schematic representation of a shock tube containing a heavy gas and a light gas bubble.

is necessary to account for the turbulent entropy transport. Creation terms are present to model
turbulence creation in the shock relaxation zone. The extension of the two-phase flow model to
such turbulent effects is summarized in System (13). The details regarding the derivation are given
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in Saurel et al. [12]

��1
�t

+ uI
��1
�x

= �(P1 − P2)

��1�1
�t

+ �(�1�1u1)

�x
= 0

��1�1u1
�t

+ �(�1�1u
2
1 + �1P1)

�x
= PI

��1
�x

+ �(u2 − u1)

��1�1E1

�t
+ �(�1�1E1u1 + �1P1u1)

�x
= PIuI

��1
�x

− �P ′
I (P1 − P2) + �u′

I(u2 − u1)

��1�1st1
�t

+ �
(
�1�1st1u1

)
�x

= Z1

Tt1(Z1 + Z2)

((
(P2−P1)+sgn

(
��1
�x

)

× (u2−u1)Z2

)2 ∣∣∣∣��1
�x

∣∣∣∣+ �(P2 − P1)
2

)

(13)

System 13 is aimed to reduce multidimensional effects in a one-dimensional model. These multi-
dimensional effects are expressed through two transport velocities, one collapse velocity and two
rotation velocities. The first effects were already present in System 1. Rotation or turbulent effects
have been added at the scale of the light gas bubble. In System 13 the last equation expresses the
evolution of the turbulent entropy stk of fluid k. Following Saurel et al. [32] it is connected to the
turbulent energy and turbulent pressure through the relations: etk = (1/(�t − 1))��t−1 exp(stk/Cvtk)

and ptk = (�t − 1)�etk . The polytropic turbulent exponent �t is equal to
5
3 when the vortices evolve

in three dimension and is equal to 2 when they evolve in two dimension. The ‘specific heat’ of
vortices is given by Cvtk = Rk/(�t − 1). From these definitions, the turbulent temperature Ttk ap-
pearing in the right-hand side of the last equation of (13) reads Ttk = etk/Cvtk . The right-hand side
of this equation represents the turbulent entropy creation term. It models the turbulence creation
at each interface of the multiphase mixture.

In this system, the total pressure Pk is the sum of two terms: the thermodynamic pressure pk
and the turbulent pressure ptk . Thus, the total pressure reads Pk = pk + ptk . The same remarks
holds for the total energy, that is the sum of three terms: Ek = ek + etk + 1

2u
2
k . The square of the

sound speed in each phase is also the sum of two terms C2
k = c2k + c2tk where the turbulent sound

speed expresses c2tk = �t ptk/�k . The thermodynamic speed of sound ck is conventional.
This last remark implies that all closure formulae for PI, P ′

I , uI, u
′
I, � and � are still valid,

except that the acoustic impedance Zk now uses the total sound speed Ck . It is noticeable that the
one-dimensional model does not involve any parameter. All terms of System (13) have explicit
expressions.

This turbulent two-phase flow model can be easily shown as unconditionally hyperbolic.
In order to validate this model, reference results are necessary. They are obtained by two-

dimensional direct numerical simulation of the flow situation shown in Figure 7. An interface
being present, an appropriate model and numerical algorithm has to be employed. We have used a
method based on a reduced multiphase flow model with single pressure and velocity able to deal
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Figure 8. Computed density contours for the shock/bulle interaction problem at times 2.91, 5.24, 7.66 and
9.66ms (top–down). The bubble contraction as well as its rotational motion is clearly visible.

with interfaces and large deformations [30]. To give an illustration of the unsteady phenomena under
study, the density contours at times 2.91, 5.24, 7.66 and 9.66ms are shown in Figure 8. These results
correspond to the reference solution that will be used to validate the one-dimensional turbulent
multiphase flow model. In order to compare one-dimensional and two-dimensional computations,
the two-dimensional results are averaged over each cross section.

The averaged two-dimensional results and the multiphase model one-dimensional (13) results,
solved with the Lagrangian scheme are shown in Figure 9. During shock–bubble interaction rotation
(turbulent) effects appear and result in turbulent entropy, turbulent energy and turbulent pressure
increase. Since the interface conditions between the bubble and the surrounding fluid have to be
fulfilled, the total pressure has to be constant across the interface. It results in a thermodynamic
pressure decrease in the gas bubble, as shown in Figure 9.

Both numerical simulations (one- and two-dimensional) are done with a mesh involving 1000
cells in the x-direction. The two-dimensional mesh uses 90 cells in the y-direction. The comparison
in Figure 9 shows an excellent agreement. The only flow variable where the agreement is perfectible
is the volume fraction at time 5.24ms. The reason is that the interface has a multi-valuated velocity
in two dimensions, while it has been considered in one dimension as single valued. This modelling
issue will be addressed in the future.

7. CONCLUSION

An efficient Lagrangian numerical scheme has been developed for a multiphase models involving
phases compressibility. The scheme building follows the discrete approach of Abgrall and Saurel
[11], Saurel et al. [12], Chinnayya et al. [13] and LeMetayer et al. [14]. The various fluxes are
upwinded by considering all waves present in the flow model. The non-conservative terms are
approximated correctly in the presence of volume fraction discontinuities and as well as shocks.
These issues are addressed in the context of moving meshes. The cells boundaries velocities are
determined with an approximate Riemann solver for the complementary conservation laws of the
non-conservative model. Several test problems with growing level of difficulty are solved.
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Figure 9. Comparison of the one-dimensional model predictions (symbols) versus the
two-dimensional averaged results (lines). The left and right column graphs correspond

to the time instants 2.91 and 5.24ms, respectively.
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